3 research outputs found

    The role of terminators and occlusion cues in motion integration and segmentation: a neural network model

    Get PDF
    The perceptual interaction of terminators and occlusion cues with the functional processes of motion integration and segmentation is examined using a computational model. Inte-gration is necessary to overcome noise and the inherent ambiguity in locally measured motion direction (the aperture problem). Segmentation is required to detect the presence of motion discontinuities and to prevent spurious integration of motion signals between objects with different trajectories. Terminators are used for motion disambiguation, while occlusion cues are used to suppress motion noise at points where objects intersect. The model illustrates how competitive and cooperative interactions among cells carrying out these functions can account for a number of perceptual effects, including the chopsticks illusion and the occluded diamond illusion. Possible links to the neurophysiology of the middle temporal visual area (MT) are suggested

    Electronic Noses And Their Applications

    No full text
    Electronic/artificial noses are being developed as systems for the automated detection and classification of odors, vapors, and gases. An electronic nose is generally composed of a chemical sensing system (e.g., sensor array or spectrometer) and a pattern recognition system (e.g., artificial neural network). We are developing electronic noses for the automated identification of volatile chemicals for environmental and medical applications. In this paper, we briefly describe an electronic nose, show some results from a prototype electronic nose, and discuss applications of electronic noses in the environmental, medical, and food industries. INTRODUCTION The two main components of an electronic nose are the sensing system and the automated pattern recognition system. The sensing system can be an array of several different sensing elements (e.g., chemical sensors), where each element measures a different property of the sensed chemical, or it can be a single sensing device (e.g., spectrom..
    corecore